要考虑能量的变化 与能量的变化有关的有各种能量形式的转化,其中直接和质量有关的只有做功。 那么先来考虑做工对于能量变化的影响。 当外力F_(后面加_表示矢量,不加表示标量)作用在静止质量为m0的质点上时,每产生ds_(位移s_的微分)的位移,物体能量增加 dE=F_*ds_(*表示点乘)。 考虑最简化的 外力与位移方向相同的情况,上式变成 dE=Fds
第2步:怎样把力做功和速度v变化联系起来呢?也就是说怎样来通过力的作用效果来得出速度的变化呢? 我们知道力对物体的冲量等于物体动量的增量。那么,通过动量定理,力和能量就联系起来了: F_dt=dP_=mdv_
第3步:上式中显然还要参考m质量这个变量,而我们不想让质量的加入把我们力和速度的关系复杂化。我们想找到一种办法约掉m,这样就能得到纯粹的速度和力的关系。 参考dE=Fds和F_dt=dP_,我们知道,v_=ds_/dt 那么可以得到 dE=v_*dP_ 如果考虑最简单的形式:当速度改变和动量改变方向相同: dE=vdP
第4步:把上式化成能量和质量以及速度三者的关系式(因为我们最初就是要讨论这个形式): dE=vd(mv)----因为dP=d(mv)
第5步:把上式按照微分乘法分解 dE=v^2dm+mvdv 这个式子说明:能量的增量含有质量因速度增加而增加dm产生的能量增量和单纯速度增加产生的能量增量2个部分。(这个观点非常重要,在相对论之前,人们虽然在理论物理推导中认识到质量增加也会产生能量增量,但是都习惯性认为质量不会随运动速度增加而变化,也就是误以为dm恒定为0,这是经典物理学的最大错误之一。)
第6步:我们不知道质量随速度增加产生的增量dm是怎样的,现在要研究它到底如何随速度增加(也就是质量增量dm和速度增量dv之间的直接关系): 根据洛仑兹变换推导出的静止质量和运动质量公式: m=m0[1-(v^2/c^2)]^(-1/2) 化简成整数次幂形式: m^2=(m0^2)[1-(v^2/c^2)] 化成没有分母而且m和m0分别处于等号两侧的形式(这样就是得到运动质量m对于速度变化和静止质量的纯粹的函数形式): (m^2)(c^2-v^2)=(m0^2)c^2 用上式对速度v求导得到dm/dv(之所以要这样做,就是要找到质量增量dm和速度增量dv之间最直接的关系,我们这一步的根本目的就是这个): d[(m^2)(c^2-v^2)]/dv=d[(m0^2)c^2]/dv(注意式子等号右边是常数的求导,结果为0) 即 [d(m^2)/dv](c^2-v^2)+m^2[d(c^2-v^2)/dv]=0 即 [m(dm/dv)+m(dm/dv)](c^2-v^2)+(m^2)[0-2v]=0 即 2m(dm/dv)(c^2-v^2)-2vm^2=0 约掉公因式2m(肯定不是0,呵呵,运动质量为0?没听说过) 得到: (dm/dv)(c^2-V^2)-mv=0 即 (dm/dv)(c^2-V^2)=mv 由于dv不等于0(我们研究的就是非静止的情况,运动系速度对于静止系的增量当然不为0) (c^2-v^2)dm=mvdv 这就是我们最终得到的dm和dv的直接关系。
第7步:有了dm的函数,代回到我们第六步的能量增量式 dE=v^2dm+mvdv =v^2dm+(c^2-v^2)dm =c^2dm 这就是质能关系式的微分形式,它说明:质量的增量与能量的增量成正比,而且比例系数是常数c^2。
最后一步:推论出物体从静止到运动速度为v的过程中,总的能量增量: 对上一步的结论进行积分,积分区间取质量从静止质量m0到运动质量m,得到 ∫dE=∫[m0~m]c^2dm 即 E=mc^2-m0c^2 这就是 物体从静止到运动速度为v的过程中,总的能量增量。 其中 E0=m0c^2称为物体静止时候的静止能量。 Ev=mc^2称为物体运动时候的总动能(运动总能量)。 对于任何已知运动质量为m的物体,可以用E=mc^2直接计算出它的运动动能
425
要考虑能量的变化 与能量的变化有关的有各种能量形式的转化,其中直接和质量有关的只有做功。 那么先来考虑做工对于能量变化的影响。 当外力F_(后面加_表示矢量,不加表示标量)作用在静止质量为m0的质点上时,每产生ds_(位移s_的微分)的位移,物体能量增加 dE=F_*ds_(*表示点乘)。 考虑最简化的 外力与位移方向相同的情况,上式变成 dE=Fds
第2步:怎样把力做功和速度v变化联系起来呢?也就是说怎样来通过力的作用效果来得出速度的变化呢? 我们知道力对物体的冲量等于物体动量的增量。那么,通过动量定理,力和能量就联系起来了: F_dt=dP_=mdv_
第3步:上式中显然还要参考m质量这个变量,而我们不想让质量的加入把我们力和速度的关系复杂化。我们想找到一种办法约掉m,这样就能得到纯粹的速度和力的关系。 参考dE=Fds和F_dt=dP_,我们知道,v_=ds_/dt 那么可以得到 dE=v_*dP_ 如果考虑最简单的形式:当速度改变和动量改变方向相同: dE=vdP
第4步:把上式化成能量和质量以及速度三者的关系式(因为我们最初就是要讨论这个形式): dE=vd(mv)----因为dP=d(mv)
第5步:把上式按照微分乘法分解 dE=v^2dm+mvdv 这个式子说明:能量的增量含有质量因速度增加而增加dm产生的能量增量和单纯速度增加产生的能量增量2个部分。(这个观点非常重要,在相对论之前,人们虽然在理论物理推导中认识到质量增加也会产生能量增量,但是都习惯性认为质量不会随运动速度增加而变化,也就是误以为dm恒定为0,这是经典物理学的最大错误之一。)
第6步:我们不知道质量随速度增加产生的增量dm是怎样的,现在要研究它到底如何随速度增加(也就是质量增量dm和速度增量dv之间的直接关系): 根据洛仑兹变换推导出的静止质量和运动质量公式: m=m0[1-(v^2/c^2)]^(-1/2) 化简成整数次幂形式: m^2=(m0^2)[1-(v^2/c^2)] 化成没有分母而且m和m0分别处于等号两侧的形式(这样就是得到运动质量m对于速度变化和静止质量的纯粹的函数形式): (m^2)(c^2-v^2)=(m0^2)c^2 用上式对速度v求导得到dm/dv(之所以要这样做,就是要找到质量增量dm和速度增量dv之间最直接的关系,我们这一步的根本目的就是这个): d[(m^2)(c^2-v^2)]/dv=d[(m0^2)c^2]/dv(注意式子等号右边是常数的求导,结果为0) 即 [d(m^2)/dv](c^2-v^2)+m^2[d(c^2-v^2)/dv]=0 即 [m(dm/dv)+m(dm/dv)](c^2-v^2)+(m^2)[0-2v]=0 即 2m(dm/dv)(c^2-v^2)-2vm^2=0 约掉公因式2m(肯定不是0,呵呵,运动质量为0?没听说过) 得到: (dm/dv)(c^2-V^2)-mv=0 即 (dm/dv)(c^2-V^2)=mv 由于dv不等于0(我们研究的就是非静止的情况,运动系速度对于静止系的增量当然不为0) (c^2-v^2)dm=mvdv 这就是我们最终得到的dm和dv的直接关系。
第7步:有了dm的函数,代回到我们第六步的能量增量式 dE=v^2dm+mvdv =v^2dm+(c^2-v^2)dm =c^2dm 这就是质能关系式的微分形式,它说明:质量的增量与能量的增量成正比,而且比例系数是常数c^2。
最后一步:推论出物体从静止到运动速度为v的过程中,总的能量增量: 对上一步的结论进行积分,积分区间取质量从静止质量m0到运动质量m,得到 ∫dE=∫[m0~m]c^2dm 即 E=mc^2-m0c^2 这就是 物体从静止到运动速度为v的过程中,总的能量增量。 其中 E0=m0c^2称为物体静止时候的静止能量。 Ev=mc^2称为物体运动时候的总动能(运动总能量)。 对于任何已知运动质量为m的物体,可以用E=mc^2直接计算出它的运动动能
要考虑能量的变化 与能量的变化有关的有各种能量形式的转化,其中直接和质量有关的只有做功。 那么先来考虑做工对于能量变化的影响。 当外力F_(后面加_表示矢量,不加表示标量)作用在静止质量为m0的质点上时,每产生ds_(位移s_的微分)的位移,物体能量增加 dE=F_*ds_(*表示点乘)。 考虑最简化的 外力与位移方向相同的情况,上式变成 dE=Fds
第2步:怎样把力做功和速度v变化联系起来呢?也就是说怎样来通过力的作用效果来得出速度的变化呢? 我们知道力对物体的冲量等于物体动量的增量。那么,通过动量定理,力和能量就联系起来了: F_dt=dP_=mdv_
第3步:上式中显然还要参考m质量这个变量,而我们不想让质量的加入把我们力和速度的关系复杂化。我们想找到一种办法约掉m,这样就能得到纯粹的速度和力的关系。 参考dE=Fds和F_dt=dP_,我们知道,v_=ds_/dt 那么可以得到 dE=v_*dP_ 如果考虑最简单的形式:当速度改变和动量改变方向相同: dE=vdP
第4步:把上式化成能量和质量以及速度三者的关系式(因为我们最初就是要讨论这个形式): dE=vd(mv)----因为dP=d(mv)
第5步:把上式按照微分乘法分解 dE=v^2dm+mvdv 这个式子说明:能量的增量含有质量因速度增加而增加dm产生的能量增量和单纯速度增加产生的能量增量2个部分。(这个观点非常重要,在相对论之前,人们虽然在理论物理推导中认识到质量增加也会产生能量增量,但是都习惯性认为质量不会随运动速度增加而变化,也就是误以为dm恒定为0,这是经典物理学的最大错误之一。)
第6步:我们不知道质量随速度增加产生的增量dm是怎样的,现在要研究它到底如何随速度增加(也就是质量增量dm和速度增量dv之间的直接关系): 根据洛仑兹变换推导出的静止质量和运动质量公式: m=m0[1-(v^2/c^2)]^(-1/2) 化简成整数次幂形式: m^2=(m0^2)[1-(v^2/c^2)] 化成没有分母而且m和m0分别处于等号两侧的形式(这样就是得到运动质量m对于速度变化和静止质量的纯粹的函数形式): (m^2)(c^2-v^2)=(m0^2)c^2 用上式对速度v求导得到dm/dv(之所以要这样做,就是要找到质量增量dm和速度增量dv之间最直接的关系,我们这一步的根本目的就是这个): d[(m^2)(c^2-v^2)]/dv=d[(m0^2)c^2]/dv(注意式子等号右边是常数的求导,结果为0) 即 [d(m^2)/dv](c^2-v^2)+m^2[d(c^2-v^2)/dv]=0 即 [m(dm/dv)+m(dm/dv)](c^2-v^2)+(m^2)[0-2v]=0 即 2m(dm/dv)(c^2-v^2)-2vm^2=0 约掉公因式2m(肯定不是0,呵呵,运动质量为0?没听说过) 得到: (dm/dv)(c^2-V^2)-mv=0 即 (dm/dv)(c^2-V^2)=mv 由于dv不等于0(我们研究的就是非静止的情况,运动系速度对于静止系的增量当然不为0) (c^2-v^2)dm=mvdv 这就是我们最终得到的dm和dv的直接关系。
第7步:有了dm的函数,代回到我们第六步的能量增量式 dE=v^2dm+mvdv =v^2dm+(c^2-v^2)dm =c^2dm 这就是质能关系式的微分形式,它说明:质量的增量与能量的增量成正比,而且比例系数是常数c^2。
最后一步:推论出物体从静止到运动速度为v的过程中,总的能量增量: 对上一步的结论进行积分,积分区间取质量从静止质量m0到运动质量m,得到 ∫dE=∫[m0~m]c^2dm 即 E=mc^2-m0c^2 这就是 物体从静止到运动速度为v的过程中,总的能量增量。 其中 E0=m0c^2称为物体静止时候的静止能量。 Ev=mc^2称为物体运动时候的总动能(运动总能量)。 对于任何已知运动质量为m的物体,可以用E=mc^2直接计算出它的运动动能
质能公式
我们都知道,爱因斯坦的质能公式E=mc2的推导过程所用的数学手段是如此的复杂,
以致我们一般人根本看不懂!但是,我们都有这样的经历,做一道数学题,往往有很多种方法,并且有一些还是十分简单,通常是事半功倍。同样道理,我们可不可以走捷径,弄出个E=mc2来呢?
事实上是有那么一种“不正统”的方法。咱们不妨来看一下:
想象一下,一个小球掉到镜面会对镜面施加一个压力,同样道理,一个光子打到镜面上会不会也有一个压力呢?在19世纪末,物理光学就清楚应该是有的,并把这种压力叫做光压。但是,光压的强度是如此的小,它根本不会把镜子推倒,所以,我们在日常生活中也就很难感觉到它的存在了。然而,太阳发出的光是那么的强,我们可以看到,它足以推动彗星的气体,使彗星在靠近太阳时产生一条长长的、耀眼的彗尾。
1899年,俄国物理学家列别捷夫就通过实验证明了光压的存在,并且还发现了一个这样的关系式,如果我们用P表示光压,E作为光的能量,老规矩,c是光速,那么可以得到
P=2E/c
好。现在假设单位时间t内的光子“撞”到镜面上,并且反弹了回来,这个过程中产生的光压为P。我们取光子“撞”向镜面的方向为正方向。根据我们学过的哪那个动量定理(力乘以时间等于动量的变化那个),对光子来说,于是有
-Pt= -mc – mc= -2mc
去掉那个负号,^-^
Pt=2mc
我们上面说了t是单位时间,也就是t=1,所以
P=2mc
别忘了列别捷夫的光压公式,恩恩
2E/c=P=2mc
约去2,两边乘以c
E=mc2
看到了没有,这种“不正统”的方法看来还有点管用!
顺便说一下,上面用的m指的是光子的质量。光子有质量?是的,我们说的是光子的引力质量,光有引力质量,而没有惯性质量,这是相对论中的知识。正因为光没有惯性质量,所以才能以光速运动,在广义相对论中,光子具有引力质量。
好了,看来“不正统”的东西有时比“正统”的更容易明白。