已知x=√{1+√[1+√(1+x)]},求x^6+x^5+2x^4 - 4x^3+3x^2+4x-4的整数部分

2025-02-25 02:03:23
推荐回答(4个)
回答1:

x=√{1+√[1+√(1+x)]}
x>0,令 x^2=1+x
那么x^2-x=1,x^4(x^2-x)=x^6-x^5=x^4
x^6=x^5+x^4
同理可得x^5=x^4+x^3,x^4=x^3+x^2,x^3=x^2+x
x^6+x^5+2x^4-4x^3+3x^2+4x-4
=(x^5+x^4)+x^5+2x^4-4x^3+3x^2+4x-4
=2x^5+3x^4-4x^3+3x^2+4x-4
=2(x^4+x^3)+3(x^3+x^2)-4x^3+3x^2+4x-4
=2x^4+x^3+6x^2+4x-4
=2(x^3+x^2)+x^3+6x^2+4x-4
=3x^3+8x^2+4x-4
=3(x^2+x)+8x^2+4x-4
=11x^2+7x-4
=11(x+1)+6x-4
=17x+7
因为x^2=x+1,x^2-x-1=0,且X>0
故:x=(1+根号5)/2,
所以,17X+7=17(1+根号5)/2+7=15.5+8.5*根号5
由于根号5=2.236,故8.5根号5=19.007
所以,上式的整数部分是:15+19=34.

回答2:

x>0,√(1+x)>1
x>1
(1+x)^2=1+√(1+√(1+x))
x^2+2x=√1+√(1+x)
x^4+4x^2+4x^3=1+√(1+x)
x^4+4x^2+4x^3-1=√1+x
y=x^4+4x^2+4x^3-√(1+x)-1
y'=4x^3+8x+12x^2-1/2√(1+x)-1
=4x(x^2+3x+2)-1/2√(1+x)-1>4x(x^2+3x+2)-2
x>1,y'>0
y|x=1=1+4+4-√2-1=8-√2>0
x=√[1+√[1+√(1+x)]]无解
题目有问题

回答3:

有点意思,上面的解答都有问题

回答4:

用计算器算的,呵呵
x=1.618034...
整数部分=36