∵3π/2
∵cos(π/4+x)=4/5,
∴sin(π/4+x)=-√[1-cos²(π/4+x)]=-3/5
∴sinx=sin[(π/4+x)-π/4]
=sin(π/4+x)cosπ/4-cos(π/4+x)sinπ/4
=-3/5*√2/2-4/5*√2/2=-7√2/10
因为3π/2
因为cos(π/4+x)=4/5,
所以sin(π/4+x)=-√[1-cos²(π/4+x)]=-3/5
所以sinx=sin[(π/4+x)-π/4]
=sin(π/4+x)cosπ/4-cos(π/4+x)sinπ/4
=-3/5*√2/2-4/5*√2/2=-7√2/10