依然是概率论题!设随机变量X服从参数为2的指数分布,证明:Y=1-e^(-2X)在区间(0,1)上服从均匀分布。

详细过程,谢谢,非常感谢!
2025-02-23 23:48:24
推荐回答(1个)
回答1:

求Y的分布函数
F(y)=P(Y≤y)=P(1-e^(-2X)≤y)=P(-e^(-2X)≤y-1)
=P(e^(-2X)≥1-y)
1、当y>1时,1-y<0,P(e^(-2X)≥1-y)=1,因此F(y)=1
2、当0≤y≤1时,
F(y)=P(e^(-2X)≥1-y)
=P(-2X≥ln(1-y))
=P(X≤(-1/2)ln(1-y)) 注:(-1/2)ln(1-y)是个正数
=∫[0→(-1/2)ln(1-y)] 2e^(-2x) dx
=1-(1-y)
=y
3、当y<0时
F(y)=P(e^(-2X)≥1-y)
=P(X≤(-1/2)ln(1-y)) 注:(-1/2)ln(1-y)是个负数
=0

综上:F(y)=1 y>1
x 0≤y≤1
0 y<0
因此Y为(0,1)上的均匀分布。