大学高数 设(a×b)·c=2,则{(a+b)×(b+c)}·(c+a)=______怎么做(abc都表示向量)

2025-02-26 15:36:52
推荐回答(5个)
回答1:

{(a+b)×(b+c)}·(c+a)=4。

分析过程如下:

{(a+b)×(b+c)}·(c+a)={a×b+b×b+a×c+bxc}·(c+a)=(a×b+0+a×c+bxc)(c+a) [注意:b×b=0]

=(a×b)·c+ ( b×c )·a [注意:(a×c)·c=0,【∵a×c⊥c】,同样0=(b×c)·c=(a×b)·a=(a×c)·a]

=2(a×b)·c=2×2=4。

扩展资料:

向量积|c|=|a×b|=|a||b|sin,即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。*运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

参考资料:百度百科——向量积

回答2:

答案是4

[(a+b)×(b+c)]·(c+a)

=(a×b+b×b+a×c+bxc)·(c+a)

=(a×b+0+a×c+bxc)(c+a) [注意:b×b=0]

=(a×b)·c+ ( b×c )·a [注意:(a×c)·c=0,【∵a×c⊥c】,同样0=(b×c)·c=(a×b)·a=(a×c)·a]

=2(a×b)·c=2×2=4

扩展资料:

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

回答3:

回答你这个"( b×c )·a =(a×b)·c为啥呢?"
因为 aXb=|a(y) a(z)| i +|a(z) a(x)| j +|a(x) a(y)| k
|b(y) b(z)| |b(z) b(x)| |b(x) b(y)|
所以(axb)·c= |a(y) a(z)|c(x) +|a(z) a(x)| c(y) +|a(x) a(y)| c(z)
|b(y) b(z)| |b(z) b(x)| |b(x) b(y)|
变成行列式即为(axb)·c=|a(x) a(y) a(z)|
|b(x) b(y) b(z)|
|c(x) c(y) c(z)|
行列式的性质:对换行列式两行 行列式的值相反 得
|a(x) a(y) a(z)| |b(x) b(y) b(z)| |b(x) b(y) b(z)|
(axb)·c=|b(x) b(y) b(z)|=-|c(x) c(y) c(z)|= |a(x) a(y) a(z)|=(bxc)·a
|c(x) c(y) c(z)| |a(x) a(y) a(z)| |c(x) c(y) c(z)|
还算清楚吧

回答4:

{(a+b)×(b+c)}·(c+a)
={a×b+b×b+a×c+bxc}·(c+a)
=(a×b+0+a×c+bxc)(c+a) [注意:b×b=0]
=(a×b)·c+ ( b×c )·a [注意:(a×c)·c=0,【∵a×c⊥c】,同样0=(b×c)·c=(a×b)·a=(a×c)·a]
=2(a×b)·c=2×2=4

回答5:

详情如图所示

有任何疑惑,欢迎追问