证明:在CB的延长线上取点H,使BH=DF,连接AH∵正方形ABCD∴AB=AD,∠ABH=∠ADC=90∵BH=DF∴△ABH≌△ADF (SAS)∴∠H=∠AFD,∠2=∠1∵AF平分∠EAD∴∠1=∠3∴∠HAE=∠2+∠4=∠1+∠4∵AB∥CD∴∠AFD=∠BAF=∠3+∠4=∠1+∠4∴∠H=∠1+∠4∴∠H=∠HAE∴AE=HE∵HE=BE+BH∴HE=BE+DF∴AE=BE+DF