设等比数列{an}的公比为q
q=a2/a1=a3/a2=a4/a3
q=(a2+a3+a4)/(a1+a2+a3)=-1/2
a1=(a1+a2+a3)/(1+q+q*q)=6/(1-1/2+1/4)=8
S8=a1*(q^9-1)/(q-1)=171/32
设公比为q a1+a2+a3=a1(1+q+q²) a2+a3+a4=a1(q+q²+q³)=a1(1+q+q²)q
q=(a2+a3+a4)/(a1+a2+a3)= - 1/2
a1+a2+a3=a1(1+q+q²)=a1(1-1/2+1/4)=(3/4)a1=6
a1=8
S8=a1(1-q^8)/(1-q)=8(1-1/256)/(1+1/2)=(8-1/32)/(3/2)=85/16