分子求导:(lnsin2x)'=2cos2x/sin2x
分母求导:(lnsin3x)'=3cos3x/sin3x
分子/分母 化简得=2cos2xsin3x/3sin2xcos3x =2tan3x/3tan2x
当x趋近于0的时候,tan3x=3x,tan2x=2x ,所以原式=2X3/3X2=1
lim(x趋于0)(lnsin2x/lnsin3x)
=lim(x趋于0)(1/sin2x*2cos2x)/(1/sin3x*3cos3x)
=2/3*lim(x->0)sin3x/sin2x
=2/3lim(x->0)3x/2x
=2/3*3/2
=1
解:
lim【x→0】lnsin2x/lnsin3x
=lim【x→0】(lnsin2x)'/(lnsin3x)'
=lim【x→0】(2cos2x/sin2x)/(3cos3x/sin3x)
=lim【x→0】2/3×tan3x/tan2x
=lim【x→】2/3 × 3x/2x
=2/3×3/2
=1
3/2