求导数f(x)'=a/x+x-(1+a)=(x-1)(x-a)/x,定义域为x>0又0令f(x)'>=0,0=1,为递增区间令f(x)'<=0,a<=x<=1,为递减区间
对f(x)求导,得导函数G(x)为a/x+x-(a+1)=(x-a)(x-1)/x令G(x)>0解得01另G(x)《0解得a《x《1所以f(x)单调增区间为(0,a)(1,+oo)单调减区间为[a,1]