设点M(x,y),由MA=2MO,知: x2+(y-3)2 =2 x2+y2 ,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|= a2+(2a-3)2 ,∴1≤| a2+(2a-3)2 ≤3,化简可得 0≤a≤ 12 5 ,故答案为:[0, 12 5 ].