延长BI交三角形ABC的外接圆于P由a+c=3b知:b=(a+c-b)/2即AC=BE=BD=b三角形ACP中,由正弦定理得:b/sinB=PC/sin(B/2)即2PC=b/cos(B/2)=BE/cos(B/2)=BI取BI中点T, 因为PI=PC(易证)所以IT=BI/2=PC=PI又角DIT=角PIK, DI=IK所以PK=DT=BI/2=PC=PA同理,PL=PC=PA所以P是四边形ACKL的外心即ACKL四点共圆