∵正数a,b,c满足a+b+c=1,∴(13a+2+13b+2+13c+2)[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,即13a+2+13b+2+13c+2≥1当且仅当a=b=c=13时,取等号∴当a=b=c=13时,13a+2+13b+2+13c+2的最小值为1.