证明:(1)∵(x3+y3 )-(x2y+xy2)=x2 (x-y)+y2(y-x)=(x-y)(x2-y2 ) =(x+y)(x-y)2.∵x,y都是正实数,∴(x-y)2≥0,(x+y)>0,∴(x+y)(x-y)2≥0,∴x3+y3≥x2y+xy2.(2)∵a,b,c∈R+,且a+b+c=1,∴1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2),∴a2+b2+c2≥ 1 3 ,当且仅当a=b=c 时,等号成立.