根号3⼀2cosx+1⼀2sinx怎么变成sin(x+π⼀3)的,运用了什么公式

2025-02-25 01:57:45
推荐回答(3个)
回答1:

Acosx+Bcosx=√(A²+B²)sin(x+φ) (tanφ=B/A)

√3/2cosx+1/2sinx=√[(√3/2)²+(1/2)²)sin(x+φ) =sin(x+φ)
∵tanφ=√3/3
∴φ=π/6
∴√3/2cosx+1/2sinx=sin(x+π/6)

回答2:

此类问题用:Acosx+Bcosx=√(A²+B²)sin(x+φ) (tanφ=B/A)

√3/2cosx+1/2sinx=√[(√3/2)²+(1/2)²)sin(x+φ) =sin(x+φ)
∵tanφ=√3/3
∴φ=π/6
∴√3/2cosx+1/2sinx=sin(x+π/6)

回答3:

sin(π/6)=1/2;cos(π/6)=√3/2
∴√3/2*sinx+1/2*cosx
=cos(π/6)sinx+sin(π/6)cosx
=sin(x+π/6)