设A是n级方阵,α是n维列向量,若αAn-1≠0,而αAn=0,试证明α,Aα,…,An-1α 线性无关。

2025-04-25 20:32:06
推荐回答(2个)
回答1:

若不然,则存在一组不全为0的(k1,k2,...,kn)
使得k1α+k2Aα+...+kn(A^n)α=0
设ki是是下标最小的不为0的k
则两边同时左乘A^(n-i-1)
则左边=ki*A^(n-1)α+0+0+...+0=ki*A^(n-1)α≠0
(因为αAn=0,所以m>n时αAm也是0)
矛盾
所以它们线性无关

回答2:

K1a+k2Aa+…+kn An-1a=0,等式两边乘以An-1,得K1=0,然后乘以An-2得k2=0,…最后乘以1,得kn=0