(1-二的平方分之一)·(1-3的平方分之1)·......乘(1-二零零四平方分之一)乘(1-二零零五平方分之一)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)x..x(1+1/2004)(1-1/2004)(1+1/2005)(1-1/2005)
=1/2x3/2x2/3x4/3x..x2003/2004x2005/2004x2004/2005x2006/2005
=1/2x2006/2005
=1003/2005
(1-1/2²)(1- 1/3²)(1- 1/4²)……(1- 1/2005²)
= [(2²-1)/2²] [(3²- 1)/3²] [(4²- 1)/4²]…… [(2005²- 1)/2005²]
= [(2+1)(2-1)/2²] [(3+1)(3-1)/3²] [(4+1)(4-1)/4²]……[(2005+1)(2005-1)/2005²]
= [(2+1)(3+1)(4+1)×……×(2005+1)] [(2-1)(3-1)(4-1)×……×(2005-1)] / (2²×3²×4²×……×2005²)
= (3×4×5×……×2006)*(1×2×3×……×2004) / (2²×3²×4²×……×2005²)
= (2006/2) /2005
= 1003/2005