链接:夸克浏览器资源你懂
∫xsin2(8x)dx=(1/2)∫x[1-cos(16x)]dx=(1/2)[∫xdx-∫xcos(16x)dx]
=(1/2)[(1/2)x2-(1/16)∫xd[sin(16x)]=(1/4)x2-(1/32)[xsin(16x)-∫sin(16x)dx]
=(1/4)x2-(1/32)[xsin(16x)-(1/16)∫sin(16x)d(16x)]
=(1/4)x2-(1/32)[xsin(16x)+(1/16)cos(16x)]+C
=(1/4)x2-(1/32)xsin(16x)-(1/512)cos(16x)+C;