利用隐函数的微分法求解:令F(x,y(x))=0.两边对x求导,得:dF/dx+(dF/dy)*(dy/dx)=0.若dF/dy<>0,则dy/dx=-(dF/dx)/(dF/dy).于是题目可以这样解:设F=y-tan(x+y),dF/dx=-sec²(x+y),dF/dy=1-sec²(x+y)=-tan²(x+y),所以dy/dx=-sec²(x+y)/tan²(x+y)=-csc²(x+y).
解: y'=(sec(x+y))^2 * (1+y')
y'=(sec(x+y))^2 + y'*(sec(x+y))^2
y'*(1-(sec(x+y))^2)=(sec(x+y))^2
y'=(sec(x+y))^2 / ( 1-(sec(x+y))^2)