已知[1+tana]⼀[1-tana]=3+2根号2,求[(sina+cosa)^2-1]⼀[cota-sinacosa]的值

2025-02-28 14:58:57
推荐回答(1个)
回答1:

(1+tanA/(1-tanA)=3+2根号2.
1+tanA=3+2根号2-(3+2根号2)tanA
(4+2根号2)tanA=2+2根号2
tanA=根号2/2

[(sinA+cosA)^2-1]/(cotA-sinAcosA)
=(1+2sinAcosA-1)/(cotA-sinAcosA)
=2sinAcosA/(cosA/sinA-sinAcosA)
=2sinA/(1/sinA-sinA)
=2(sinA)^2/[1-(sinA)^2]
=2(sinA)^2/(cosA)^2
=2(tanA)^2
=2*1/2
=1