如何用无穷级数性质得到这个等式∑_(n=0)^∞鈥〖(1+g)〗^n⼀〖(1+k)〗^n =((1+g))⼀((k-g))

2025-04-30 07:24:51
推荐回答(1个)
回答1:

直接在等式∑{0 ≤ n} x^n = 1/(1-x)中取x = (1+g)/(1+k)即得:
∑{0 ≤ n} (1+g)^n/(1+k)^n = 1/(1-(1+g)/(1+k)) = (1+k)/(k-g).
所以你的等式写错了, 大概是∑{1 ≤ n} (1+g)^n/(1+k)^n = (1+k)/(k-g)-1 = (1+g)/(k-g).

至于∑{0 ≤ n} x^n = 1/(1-x), 可以由等比数列求和公式得到(|x| < 1时收敛).
或者形式的由x·∑{0 ≤ n} x^n = ∑{1 ≤ n} x^n = ∑{0 ≤ n} x^n-1得到.