等比数列的性质与等差数列的性质

简单讲述,越简单越好。不用英语就尽量不用,谢谢。
2024-12-04 00:19:05
推荐回答(2个)
回答1:

等差数列
通项公式
  an=a1+(n-1)d   an=Sn-S(n-1) (n≥2)   an=kn+b(k,b为常数)
前n项和
  倒序相加法推导前n项和公式:   Sn=a1+a2+a3······+an   =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d] ①   Sn=an+(an-d)+(an-2d)+······+[an-(n-1)d] ②   由①+②得2Sn=(a1+an)+(a1+an)+(a1+an)(n个)=n(a1+an)   固 Sn=n(a1+an)/2   等差数列的前n项和等于首末两项的和与项数乘积的一半:   Sn=n(a1+an)/2=n*a1+n(n-1)d/2   Sn=(d/2)*n^2+(a1-d/2)n
性质
  且任意两项am,an的关系为:   an=am+(n-m)d   它可以看作等差数列广义的通项公式。   从等差数列的定义、通项公式,前n项和公式还可推出:   a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}   若m,n,p,q∈N*,且m+n=p+q,则有   am+an=ap+aq   S2n-1=(2n-1)an,S2n+1=(2n+1)an+1   Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列,等等。   和=(首项+末项)×项数÷2   项数=(末项-首项)÷公差+1   首项=2和÷项数-末项   末项=2和÷项数-首项   设a1,a2,a3为等差数列。则a2为等差中项,则2倍的a2等于a1+a3,即2a2=a1+a3。
等比数列
通项公式
  an=a1q^(n-1)   an=Sn-S(n-1) (n≥2)
前n项和
  当q≠1时,等比数列的前n项和的公式为   Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)   当q=1时,等比数列的前n项和的公式为   Sn=na1
性质
  任意两项am,an的关系为an=am·q^(n-m)   (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}   (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。   记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1   另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。   性质:   ①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;   ②在等比数列中,依次每 k项之和仍成等比数列。   “G是a、b的等比中项”“G^2=ab(G≠0)”.   (5) 等比数列前n项之和Sn=a1(1-q^n)/(1-q)   在等比数列中,首项a1与公比q都不为零。   注意:上述公式中a^n表示A的n次方。

回答2:

等差数列
性质
任意两项am,an的关系为:   an=am+(n-m)d   它可以看作等差数列广义的通项公式。

等比数列
性质
  任意两项am,an的关系为an=am·q^(n-m)