设A={4 1 1,1 4 1,1 1 4} 求一正交矩阵Q,使得QtAQ为对角型。 写出A对应的二次型f,并判定f的正定性

QtAQ t是Q的平方 Q的T次方请已这个方式回答
2025-02-27 13:21:18
推荐回答(2个)
回答1:

解: |A-λE| =
4-λ 1 1
1 4-λ 1
1 1 4-λ
= -(λ-6)(λ-3)^2.
所以A的特征值为: 3,3,6
(A-3E)X = 0 的基础解系: a1=(1,-1,0)^T,a2=(1,0,-1)^T
(A-6E)X = 0 的基础解系: a3=(1,1,1)^T
将a1,a2,a3正交化得
b1=(1,-1,0)^T
b2=(1/2,1/2,-1)^T
b3=(1,1,1)^T
单位化得
c1 = (1/√2, -1/√2, 0)^T
c2 = (1/√6, 1/√6, -2/√6)^T
c3 = (1/√3, 1/√3,1/√3)^T
得正交矩阵Q = (c1,c2,c3)
1/√2 1/√6 1/√3
-1/√2 1/√6 1/√3
0 -2/√6 1/√3
则Q是正交矩阵, 且Q^-1AQ=diag(3,3,6).
f正定

回答2:

A={1/32≤2^-x≤4},2^(-5)<=2^(-x)<=2^2,(-5)<=(-x)<=2-2<=x<=5x=-2,-1,0,1,2,3,4,5,A的非空子集个数2^8=256个;A∩B=B,说明B中x满足-2<=x<=5【1】;令x^2-3mx+2m^2-m-1<0得到{x1=-1+m},{x2=1+2m}(m<-2有1+2m