sinθ+cosθ=1⼀5,θ∈(0,π)求 ①tanθ ②sinθ-cosθ ③sin^6θ-cos^6θ

2025-02-27 18:31:23
推荐回答(2个)
回答1:

答:
3)sinθ+cosθ=1/5
两边平方:(sinθ)^2+2sinθcosθ+(cosθ)^2=1/25
所以;sinθcosθ=-12/25

原式=(sinθ)^6-(cosθ)^6
=[(sinθ)^3+(cosθ)^3]*[(sinθ)^3-(cosθ)^3]
=(sinθ+cosθ)[(sinθ)^2-sinθcosθ+(cosθ)^2]*(sinθ-cosθ)[(sinθ)^2+sinθcosθ+(cosθ)^2]
=(1/5)(1+12/25)(7/5)(1-12/25)
=3367/15625
=0.215488

回答2:

(sinθ+cosθ)²=1/25,
sinθcosθ=-12/25
③sin^6θ-cos^6θ
=(sin³θ)²-(cos³θ)²
=(sin³θ-cos³θ)(sin³θ+cos³θ)
=(sinθ+cosθ)(sinθ-cosθ)(1+sinθcosθ)(1-sinθcosθ)
=(1/5)(7/5)(1-sin²θcos²θ)
=(1/7)(1-144/625)
=(1/7)(481/625)
=