在△ABC中,角A,B,C的对边分别是a,b,c,且acosC=(2b-c)cosA.(Ⅰ)求角A的大小;(Ⅱ)已知a=3,D

2025-04-06 06:41:24
推荐回答(1个)
回答1:

(Ⅰ)∵acosC=(2b-c)cosA,
∴sinAcosC=2sinBcosA-sinCcosA,
∴sin(A+C)=2sinBcosA,
∴sinB=2sinBcosA,
∵又sinB≠0
cosA=

1
2

0<A<π∴A=
π
3

(Ⅱ)∵
b
sinB
a
sinA
=2

∴b=2sinB
∴AD2=b2+(
a
2
2-2?
a
2
?b?cosC
=4sin2B+
3
4
-2
3
sinBcosC
=4sin2B+
3
4
-2
3
sinBcos(
3
-B)
=sin2B+
3
sinBcosB+
3
4

=
3
2
sin2B-
1
2
cos2B+
5
4

=sin(2B-
π
6
)+
5
4

B∈(0,
3
)∴2B?