(Ⅰ)∵acosC=(2b-c)cosA,
∴sinAcosC=2sinBcosA-sinCcosA,
∴sin(A+C)=2sinBcosA,
∴sinB=2sinBcosA,
∵又sinB≠0
∴cosA=
,1 2
∵0<A<π∴A=
.π 3
(Ⅱ)∵
=b sinB
=2,a sinA
∴b=2sinB
∴AD2=b2+(
)2-2?a 2
?b?cosCa 2
=4sin2B+
-23 4
sinBcosC
3
=4sin2B+
-23 4
sinBcos(
3
-B)2π 3
=sin2B+
sinBcosB+
3
3 4
=
sin2B-
3
2
cos2B+1 2
5 4
=sin(2B-
)+π 6
5 4
∵B∈(0,
)∴2B?2π 3