(1)由2Sn=2an2+an-1,得2Sn+1=2an+12+an+1?1.
两式相减得:2an+1=2(an+1-an)(an+1+an)+(an+1-an)?
(an+1+an)(2an+1-2an-1)=0
∵an>0,∴2an+1-2an-1=0,∴an+1=an+
.1 2
∴数列{an}是以1为首项,
为公差的等差数列1 2
∴an=
;n+1 2
( 2 )由bn=
=an 2n
n+1 2n+1
则Tn=
+2 22
+3 23
+…+4 24
,①n+1 2n+1
Tn=1 2
+2 23
+3 24
+…+4 25
.②n+1 2n+2
①-②得:
Tn=1 2
+2 22
+1 23
+1 24
+…+1 25
?1 2n+1
n+1 2n+2
=