如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌

2025-04-27 20:11:06
推荐回答(1个)
回答1:

(1)证明:∵AB=AC,
∴△ABC是等腰三角形,
又∵点D为BC的中点,
∴∠BAE=∠CAE(三线合一),
在△ABE和△ACE中,

AB=AC
∠BAE=∠CAE
AE=AE

∴△ABE≌△ACE(SAS).

(2)解:当AE=2AD(或AD=DE或DE=
1
2
AE)时,四边形ABEC是菱形
理由如下:
∵AE=2AD,∴AD=DE,
又∵点D为BC中点,
∴BD=CD,
∴四边形ABEC为平行四边形,
∵AB=AC,
∴四边形ABEC为菱形.