x(y^2+1)dx+y(1-x^2)dy=0y/(1+y²)dy=x/(x²-1)dx即2y/(1+y²)dy=2x/(x²-1)dx两边积分,得ln(1+y²)=ln(x²-1)+lnc所以通解为1+y²=c(x²-1)
y^2+1=c(x^2-1) c为常数