第一个是一次曲线拟合。第二个既然是“二次方程”,那就是二次曲线拟合。类似地,用三次方程表示就是三次曲线拟合;用指数就是指数曲线拟合,线性回归和一次曲线拟合没有区别。
线性回归就是线性拟合,在统计的意义上是等价的。拟合就是为了找到那条,对所有点来说,残差平方和最小的直线,线性回归也是。回归命名的统计学家是想说,这些点都围绕在一条看不见的直线,直线周围的点若偏离的大了感觉就有回归直线,向直线靠拢的趋势。
基本含义
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量)。
第一个是一次曲线拟合。
第二个既然是“二次方程”,那就是二次曲线拟合。类似地,用三次方程表示就是三次曲线拟合;用指数就是指数曲线拟合……
线性回归和一次曲线拟合没有区别。
回归(分析)可以理解为一种方法或算法,即研究因变量Y和自变量X之间关系的一种数学统计方法,目的是了解Y和X之间相关性的强度。
拟合是推求一个函数表达式y=f(x)来描述y和x之间的关系,一般用最小二乘法原理来计算。
用直线来拟合时,可以叫一次曲线拟合,虽然有点别扭;用二次函数来拟合时,可以叫抛物线拟合或二次曲线拟合,但不能说线性回归。
用直线(y=ax+b)拟合时,得到的方程和一元线性回归分析得到的方程是一样的,但是拟合时可以人为指定函数参数形式,如b=0,而线性回归分析目的则侧重于描述y和x线性相关的程度,通常会同时计算相关系数、F检验值等统计参数。