(3) 令bn= a₁•a₂•a₃•...•an-₁•an
则 bn-₁=a₁•a₂•a₃•...•an-₁
n项之积:bn=a₁•a₂•a₃•...•an-₁•an=n²
n-1项之积:bn-₁=a₁•a₂•a₃•...•an-₁=(n-1)²
bn/bn-₁=an=n²/(n-1)²=[n/(n-1)]²=[(n-1+1)/(n-1)]²=[1+1/(n-1)]²
同理 an+₁=bn+₁/bn=[(n+1)/n]²=[1+1/n]²
因为 1/(n-1)>1/n
则[1+1/(n-1)]²>[1+1/n]²
an>an+₁