∵f′(x)= 4(1-x2) (x2+1)2 ,令f′(x)>0,解得-1<x<1∴函数f(x)的递增区间为(-1,1).又∵f(x)在(m,2m+1)上单调递增,∴ m≥-1 2m+1≤1 ,解得-1≤m≤0.∵在区间(m,2m+1)中2m+1>m,∴m>-1.综上,-1<m≤0.