下面有四个命题:(1)各个侧面都是等腰三角形的棱锥是正棱锥;(2)三条侧棱都相等的棱锥是正棱锥;(3

2025-04-07 15:54:57
推荐回答(1个)
回答1:

解:根据题意,结合正棱锥的结构特征,依次分析4个命题可得:
对于(1)、如图:三棱锥A-BCD中,AB=AC=b,AD=CD=BC=BD=a,其每个侧面是等腰三角形,但不是正三棱锥,故(1)错误;
对于(2)、对于正三棱锥,底面必须是正三角形,故(2)错误;
对于(3)、对于正三棱锥,三条侧棱长必须相等,故(3)错误,
对于(4)、该棱锥的底面多边形的内心与外心重合,则其底面为正多边形,则其内心(外心)为底面多边形的中心,则顶点在底面上的射影是底面多边形的中心,符合棱锥的定义,故(4)正确.
只有一个命题正确;
故选A.