已知椭圆E:x2⼀a2+y2⼀b2=1(a>b>0)的离心率为√2⼀2,且过点P(2,√2)

2024-11-29 05:32:58
推荐回答(1个)
回答1:

解:①由椭圆E的离心率为√2/2,得 c/a=√2/2 而在椭圆E中,a>b>0,a²=b²+c²
又 椭圆过点P(2,√2),得 4/a²+2/b²=1 ∴ a²=8,b²=4,椭圆方程为x²/8+y²/4=1
则 B(0,2),A(4,0)(右准线l:x=a²/c=4) ∴ 直线AB的方程为x+2y=4,O到AB距离d=4√5/5
则 圆O半径为r=2,圆O方程为x²+y²=4