高中数学参数方程题

2025-04-30 16:12:38
推荐回答(2个)
回答1:

(2)α的变化范围是[0,π)
当α=0时,C1为x轴,无法过原点向其作垂线,排除
当α≠0时,设C1的普通方程为x=my+1,m=cotα.
则OA:y=-mx,联立OA和C1方程得A(1/(1+m²),-m/(1+m²))
∴P(1/(2+2m²),-m/(2+2m²))
∴P的参数方程为
x=1/(2+2m²),y=-m/(2+2m²),m为参数(m=cotα,α∈(0,π))
又2x=1/(1+cot²α)=1/csc²α=sin²α,2y=-cotα/(1+cot²α)=-cotαsin²α=-sinαcosα
4x=2sin²α=1-cos2α,4y=-2sinαcosα=-sin2α
∴cos2α=1-4x,sin2α=-4y,平方相加得1=(1-4x)²+(-4y)²
即(x-1/4)²+y²=1/16,∴P的轨迹是以(1/4,0)为圆心,1/4为半径的圆(去掉原点)

回答2:

把C1改写成y=(x-1)sina/cosa=xtana-tana;
则OA:y=-xcota,(因为过原点)
则A:[tana/(tana+cota),-cotatana/(tana+cota)]=[sin^2a,-sin(2a)/2]
则P:[sin^2a/2,-sin(2a)/4]={[(1-cos(2a)]/4,-sin(2a)/4}
即:x=[(1-cos(2a)]/4,y=-sin(2a)/4,即:(1-4x)^2+(-4y)^2=1