答:
a²+a+1=0,两边同除以a:a+1/a+1=0,a+1/a=-1
(a-1)(a²+a+1)=0
a³=1
a^1999+1/a^1999
=a*(a³)^666+1/[a*(a³)^666]
=a+1/a
=-1
所以:
a^1999+1/a^1999=-1
a^2+a+1=0
两边都除以a
=》a+1/a+1=0
=>a+1/a=-1
令bn=a^n+1/a^n
(a+1/a)(a^n+1/a^n)=a^(n+1)+1/a^(n+1)+a^(n-1)+1/a^(n-1)
=>-bn=b(n+1)+b(n-1)
=>b(n+1)=-(bn+bn-1)
b1=a+1/a=-1
b2=a^2+1/a^2=(a+1/a)^2-2=-1
=>b3=b2+b1=2
b4=b3+b2=-1
b5=b4+b3=-1
b6=b5+b4=2
b7=b6+b5=-1
..
=>b(3n+1)=b(3n+2)-1,
b(3n)=2
a^1999+1/a^1999=b(1999)=b(3*666+1)=-1
因此所求值是-1
首先 a^2+a+1=0
两边除以a :a+1+1/a=0
a+1/a=-1
平方:a^2+2+1/a^2=1
a^2+1/a^2=-1
我们记 b[k]=a^k+1/a^k
有如下关系: b[k]=b[1]*b[k-1]-b[k-2]
然后代入计算b[k]:-1,-1,2,-1,-1,2....
以三位循环,1999=3*666+1
结果是-1