1、空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:
2、平面向量(x,y),模长是:
扩展资料:
向量的模
1、模只有大小,是个实数,|a|≥0;
2、|a|^2=a*a=a^2;
3、|a+b|^2=|a|^2+2a*b+|b|^2=a^2+2a*b+b^2;
4、||a|-|b||≤|a±b|≤|a|+|b|;
5、若a=(x,y),则|a|=√(x^2+y^2)
在线性代数中,向量常采用更为抽象的向量空间(也称为线性空间)来定义。向量是所谓向量空间中的基本构成元素。向量空间是基于物理学或几何学中的空间概念而形成的一个抽象概念,是满足一系列法则的元素的集合,而欧几里得空间便是线性空间的一种。向量空间中的元素就可以被称为向量,而欧几里得向量则是特指欧几里得空间中的向量。
向量的模长计算公式
1、空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:
2、平面向量(x,y),模长是:
3、对于向量属于n维复向量空间
=(x1,x2,…,xn)
的模为
=
扩展资料:
一、向量的模
1、模只有大小,是个实数,|a|≥0;
2、|a|^2=a*a=a^2;
3、|a+b|^2=|a|^2+2a*b+|b|^2=a^2+2a*b+b^2;
4、||a|-|b||≤|a±b|≤|a|+|b|;
5、若a=(x,y),则|a|=√(x^2+y^2)
二、向量的性质
向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。模是绝对值在二维和三维空间的推广,可以认为就是向量的长度。推广到高维空间中称为范数。
参考资料:百度百科词条--向量的模
坐标平方和的平方根。
空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:
平面向量(x,y),模长是:
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
设向量A=(x1,y1),向量B=(x2,y2),则向量A的模=根号(x1^2+y1^2),向量B的模=根号(x2^2+y2^2)。所以,根据你的题目,MF1=(x+根号(10),y) MF2=(x-根号(10),y),MF1与向量MF2模的和即为 :根号((x+根号(10))^2+y^2)+根号((x-根号(10))^2+y^2)=2
模长公式是向量的横坐标的平方加上向量纵坐标的平方的和再开平方。模长是指向量的长度,只有大小数值,没有向量带有的方向性。模是实数,且恒大于等于0。向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。