我想问一个数学问题,比较大小的

当0<n<1时,比较(1-d)^n与1-dn的大小d是贴现率
2025-04-26 08:47:58
推荐回答(4个)
回答1:

根据泰勒展开公式:当|d|<1时,(1-d)^n=1-dn+n(n-1)/2*d^2-.......
因n-1<0,所以n(n-1)/2*d^2<0,所以(1-d)^n<1-dn

回答2:

这个确实有点麻烦,但是如果是我的话我觉得用具体的相似数据带入比较法,会比较简单、如,n为0.5, d为,0.2.那么前面的个数为0.89443,后面的的个如果是1-dn为,0.9,要是是1-d^n为0.5528不知道你是不是弄错了。具体数据给你了。

回答3:

你使用假设方法吧,我上学的时候不会了就用假设法,很好用的。比如:因为0

回答4:

(1-d)^n=n-dn,也就是说比较n-dn,1-dn的大小取决于n的大小

因为0