数学必修五的这道数列题怎么做

2025-02-26 17:07:26
推荐回答(1个)
回答1:

解:
(1)
a1=S1=2a1-3
∴a1=3
∵Sn=2an-3n
S(n+1)=2a(n+1)-3(n+1)
=2a(n+1)-3n-3
∴S(n+1)-Sn=2a(n+1)-3n-3-2an+3n
=2a(n+1)-2an-3
=a(n+1)
∴a(n+1)=2an+3
(2)
已知a(n+1)=2an+3
∴A=2,B=3
∴数列{an+3}是以2为公比的等比数列
∵a1=3
所以a1+3=6
∴数列{an+3}是以6为首项,2为公比的等比数列
∴an+3=6*2^(n-1)=3*2^n
∴an=3+3*2^n
(3)
Sn=a1+a2+a3+…+an
=3*(2+4+8+…+2^n)+3n
=3*[2*(1-2^n)/(1-2)]+3n
=3*2*(2^n-1)+3n
=6*2^n+3n-6