1. 先证有界性
设 xn<=3
xn+1=√6+Xn<=√6+3=3
即
xn+1-xn=√6+Xn-√6+Xn-1
=(xn-xn-1)/[√6+Xn+√6+Xn-1]
所以
xn+1-xn和xn-xn-1 符号相同
而
x2=√6+X1=4
x2-x1<0
所以
xn+1-xn<0
xn+1
{xn}是减函数,
所以单调有界数列必有极限;
设极限=a
则
limXn+1=lim√6+Xn
a=√6+a
a²=6+a
a²-a-6=0
(a+2)(a-3)=0
a=3
即
极限=3
给个好评吧,谢谢