令 x/3=y/5=z/7=k(k不等于0),则x=3k,y=5k,z=7k,代入原始可得结果为5/13.
(3x+2y-z)/(3x-2y+z)=[(3x-2y+z)+(4y-2z)]/(3x-2y+z)=1+4y/(3x-2y+z)-2z/(3x-2y+z)=1+4(1/(3(x/y)-2+(z/y)))-2(1/(3(x/z)-2(y/z)+1))=1+4(1/(3×3/5-2+7/5)-2(1/(3×3/7-2×5/7+1))=1+10/3-7/3=4