解:(1)设有n个1和n个5组成了11…1155…55
(1)
则,设11…11(n个)=M
(2)
则11…1155…55可表示为M×10+5M
(3)
再往下化则有M×(99…99+1)+5M
(4)
M×99…99+6M=M×11…11×9+6M(5)
又因为11…11=M,
所以化为9M+6M=3M×(3M+2),
又因为M为奇数所以3M为奇数,所以3M+2为奇数;
(2)因为1×9=9,
11×99=1089,
111×999=110889,
1111×9999=11108889,
33…3×33…3=1…1(n-1个1)08…8(n-1个8)9+20…0(n个0),
=1…1(n-1个1)28…8(n-1个8)9-1…1(n-1个1)28…8(n-1个8)8,
=1…1(n-1个1)28…8(n个8),
结果中的奇数数字为n-1个.