数学上,两个集合和的交集是含有所有既属于又属于的元素,而没有其他元素的集合。
A 和 B 的交集写作 "A ∩B"。形式上: x 属于 A ∩B 当且仅当 x 属于 A且 x 属于 B。 例如:集合 {1, 2, 3} 和 {2, 3, 4} 的交集为 {2, 3}。 若两个集合 A 和 B 的交集为空,就是说他们没有公共元素,则他们不相交。
扩展资料
集合的运算:
1、交换律
A∩B=B∩A
A∪B=B∪A
2、结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
算术概念,两个集合或者是区间存在着部分重叠的情形,重叠部分所形成的集合或者区间就是交集。
比如集合{3,5,6,8}和集合{9,6,7,3},这两个集合的交集就是{3,5}。
数学上,两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。
A 和 B 的交集写作 "A ∩B"。形式上: x 属于 A ∩B 当且仅当 x 属于 A且 x 属于 B。
例如:集合 {1, 2, 3} 和 {2, 3, 4} 的交集为 {2, 3}。数字 9 不属于素数集合 {2, 3, 5, 7, 11} 和奇数集合 {1, 3, 5, 7, 9, 11}的交集。
若两个集合 A 和 B 的交集为空,就是说他们没有公共元素,则他们不相交。
更一般的,交集运算可以对多个集合同时进行。例如,集合 A,B,C 和 D 的交集为 A ∩B ∩C∩D =A∩(B ∩(C ∩D))。交集运算满足结合律,即 A ∩(B∩C)=(A∩B) ∩C。
最抽象的概念是任意非空集合的集合的交集。若 M 是一个非空集合,其元素本身也是集合,则 x 属于 M 的交集,当且仅当对任意 M 的元素 A,x 属于 A。
几个(两个或两个以上)集合的相交部分,即同时属于几个集合,或同时满足几个条件的量.
用在感情方面就是指两个人在观念、审美、品味、爱好以及衣食住行等因素上的一致性.
1楼的,是3,6吧。呵呵