向量证明这两个定理一点优势都没有!!!!
A、《塞瓦定理》:O为△ABC内任一点,AO延交BC于D,
BO延交AC于E,CO延交AB于F,则(AF/BF)•(BD/CD)•(CE/AE)=1,见图4。
证明:在△AOB中,OF分∠AOB,由《分角定理》→
AF/BF=(sin∠AOF/sin∠BOF)•(AO/BO),
同理,在△BOC,△COA中也有。∴
(AF/BF)•(BD/CD)•(CE/AE)= (sin∠AOF/sin∠BOF)•(AO/BO) •(sin∠BOD/sin∠COD)•(BO/CO)
•(sin∠COE/sin∠AOE)•(CO/AO)=1(由对顶角相等)。
不添线,只列一式。
B、《梅涅劳斯定理》:△ABC被一直线内分AB于F,内分BC于D,外分AC于E,则(AF/BF)•(BD/CD)•(CE/AE)=1,见图5。
证明:连AD,在△ADB中,DF内分∠ADB,由《分角定理》→
AF/BF=(sin∠ADF/sin∠BDF)•(AD/BD);在△ACD中,DE外分∠ADC,同理→
CE/AE=(sin∠CDE/sin∠ADE)•(CD/AD)。∴
(AF/BF)•(BD/CD)•(CE/AE)= (sin∠ADF/sin∠BDF)•(AD/BD)•(BD/CD)•
(sin∠CDE/sin∠ADE)•(CD/AD)=1。(由对顶角相等,辅角相等)
只添一线,只列一式。
这种不添线(或只添一线)的证明方法,在数学史上属首创。
简单!