由f(x)=f′(1)ex-1-f(0)x+ 1 2 x2,得:f′(x)=f′(1)ex-1-f(0)+x,令x=1得:f(0)=1;在f(x)=f′(1)ex-1-f(0)x+ 1 2 x2中,取x=0,得f(0)=f′(1)e-1=1,∴f′(1)=e所以f(x)的解析式为f(x)=ex?x+ 1 2 x2.故答案为f(x)=ex?x+ 1 2 x2.