设x,y,z为实数,比较5x눀+y눀+z눀与2xy+4x+2z-2的大小

2025-02-25 21:42:20
推荐回答(1个)
回答1:

(5x²+y²+z²)-(2xy+4x+2z-2)
=(x²-2xy+y²)+(4x²-4x+1)+(z²-2z+1)
=(x-y)²+(2x-1)²+(z-1)²
因x,y,z为实数,故(x-y)²、(2x-1)²、(z-1)²均不小于0
即:(x-y)²+(2x-1)²+(z-1)²≥0
所以:(5x²+y²+z²)-(2xy+4x+2z-2)≥0
即:5x²+y²+z²≥2xy+4x+2z-2