一元三次方程解法

2024-12-02 15:45:15
推荐回答(3个)
回答1:

两种方法(我只有高中水平)
1:因式分解,就是写成k*(x-a)(x-b)(x-c)=0 然后根为a,b,c
2:猜根,因为有的可以看出显然有根,比如 x^3+x^2+x-3=0有一根为1
然后就可以用多项式除法,(x^3+x^2+x-3)除以(x-1)=x^2+2x+3
然后就会了吧?
除法就像除数一样,自己试试,不懂问我。

回答2:

一元三次方程是型如ax^3+bx^2+cx+d=0的标准型
其解法如下
将上面的方程化为x^3+bx^2+cx+d=0,
设x=y-b/3,则方程又变为y^3+(c-b^2/3)y+(2b^3/27-bc/3+d)=0
设p=c-b^2/3,q=2b^3/27-bc/3+d,方程为y^3+py+q=0
再设 y=u+v
{
p=—3uv
则(u^3+v^3)+3uv(u+v)+p(u+v)+q=0 => u^3+v^3+q=0
所以q+u^3-(p/(3u))^3=0,即(u^3)^2+qu^3-(p/3)^3=0
设u^3=t,则t^2+qt-(p/3)^3=0
解得t=(-q±(q^2+4(p/3)^3)^0.5)/2
所以u=((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3),
所以v=—p/(3u)=(-p/3)/((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3)
所以y1=u+v
=((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3)+(-p/3)/((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3)
这是一个根,现求另两根:
将y1代入方程得
y^3+py+q=(y-y1)*f(x)
f(x)用待定系数法求,即设
y^3+py+q
=(y-y1)(y^2+k1y+k2)
=y^3+(k1-y1)y^2+(k2-k1y1)y-k2y1
所以k1=y1,k2=p+k1^2
f(x)=y^2+y1*y+p+y1^2
然后用求根公式解出另两根y2,y3.

回答3: