答案为:-i。
向量 OP 对应的复数是1-i,将 OP 向左平移一个单位,
可得 O0P0 = OP -1=-i
∴点P0对应的复数为-i.
扩展资料:
给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合积具有下列性质:
1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)
2、上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0
3、(abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)
向量
可得
∴点P 0 对应的复数为-i. 故答案为:-i |