所谓公理化方法,起源于古希腊数学家欧几里得的《几何原本》。在该书中对于几何学提出了为数绝少的几条公理,然后用逻辑推理的方法得到所有其它定理,从而将整个几何学建成为一个明白易懂又非常严格的逻辑体系。只要公理不错,则所有得到的定理的真理性也就没有问题。这里的所谓公理,听起来似乎抽象,实际上就是大家都能够接受,对它们的正确性没有疑问的几个事实。
所谓实数系的公理化方法也是如此,我们将心目中实数应当具有的尽可能少的独立性质列出来作为公理,使得其他性质都可以由公理推出来,这就建成了一个公理化系统(“实数公理”)。
希尔伯特公理化方法刻画了我们所需要的实数系究竟是什么样的,它解决了中学数学中有关实数的许多遗留问题,如到底什么是实数的加法和乘法,为什么实数的加法满足交换律、结合律,乘法也满足交换律、结合律等,可以理解为公理规定的,事实上,如果提供更为基本的假设(比如在有理数的基础上),这些运算律都是可以证明的。它还保证了实数系的基本定理的成立,为数学分析中极限理论的展开提供了必要的舞台。而满足这些公理的实数系是否存在,存在性问题是靠下述各种构造方法解决的,也就是给出生成实数系的具体方法,同时证明在其中满足公理化方法中列出的所有公理。有关公理化的方法可以参看卓里奇的《数学分析(第一卷)》。 实数系的存在性是通过构造法引入的,以下是构造实数系的三种方法(主要是从有理数定义出无理数)。
1.戴德金分割方法
戴德金分割的方法在有关数学分析的著作中多有介绍。最经典的叙述是兰道特地为此编写的小书《分析基础》 ,这本书的副标题就是“整数、有理数、实数、复数的运算”,该书从自然数出发,一直定义到复数,把完整的数系定义展现了出来。
在前苏联的数学分析教材中对戴德金方法做完整叙述的,首推由三卷本组成的经典教材:菲赫金哥尔茨的《微积分学教程》 。该书的绪论对戴德金分割方法有完整的叙述,它为全书奠定了牢靠的基础。另外还可以看亚历山大罗夫的《集与函数的泛论初阶》 和辛钦的《数学分析八讲》 第一讲,鲁金的《实变函数论》 附录Ⅰ,华东师范大学数学系的《数学分析(第三版)》 附录Ⅱ。
在西方教材中,斯皮瓦克的《微积分》 在开始时用两章详细介绍了数系的公理,书末又用三章讲如何构造实数;卢丁的《数学分析原理》 的第一章和附录有对实数理论简短的叙述。这两种教材对戴德金分割的方法都有所改动,从数学史(波耶的《微积分概念史,对导数与积分的历史性评论》 一书中)知道,这基本上就是罗素提出的实数定义方法。
在各种引入实数系的方法中,戴德金分割方法受到了高度的评价,被称作完全不依赖于空间与时间直观的人类智慧的创造物。
2.康托尔的基本列(即柯西列)方法
这方面的内容可以参考辛钦的《数学分析简明教程》 第四章,范德瓦尔登的《代数学》 第68节,许绍溥、宋国柱等编的《数学分析》 第五章,邹应的《数学分析》 第二章以及华东师范大学数学系的《数学分析(第一版)》的附录Ⅱ。
3.魏尔斯特拉斯从十进小数表示出发的方法
这种方法与前两个方法不同,不需要引入新的数学对象作为无理数,而是从中学已有的定义出发,即承认十进制有限小数和无限循环小数是有理数,而十进制无限非循环小数则是无理数。这样就比较容易为中学生所接受。因此也称为中学生的实数理论。
但为什么是十进制无限非循环小数?这里不可避免地涉及到极限问题。在有了柯西准则之后,我们可以从数列极限或无穷级数之和来理解十进制无限非循环小数。但在建立实数系之前是不能如此理解的,否则就与历史上的柯西犯同样的错误了。
因此,为了避免逻辑上的循环定义,在将十进制无限非循环小数定义为无理数时,一开始不可能将它看成是一个无穷级数的和,而只是将它看成一个纯粹的记号,一个还不清楚有什么意义的数学对象。然后在所有十进制小数全体组成的集合内引入加法、乘法运算,并规定其中任何两个小数之间的序,并验证它满足域公理、序公理、阿基米德公理和连续性公理这4组公理。当然这里需要经过很多步骤的推论。事实上,认为这样一种记号代表实数也是一种数学抽象,而且这也是连续性公理的另一种等价形式,历史上沃利斯于1696年将有理数与循环小数等同。而斯托尔茨则于1886年提出将十进制无限非循环小数作为无理数的定义 ,但仍未建立起一个满意的实数理论。
从十进制小数开始讲实数的教材很多,例如可以参考阿黑波夫的《数学分析讲义》 ,关肇直的《高等数学教程》 和华罗庚的《高等数学引论》 等。在张筑生的《数学分析新讲》 的第一章比较详细的讲解了在十进制小数中引入四则运算的严格方法。
可以归入这条途径的还有一种做法,就是引进以有理数为端点的闭区间套原理作为连续性公理的一种替代物。它既比较直观,同时又避开了十进制无限非循环小数这类一开始难以说清楚的对象,也是一种好方法。 首先要明白这里惟一性的确切含义,这里指的是在同构意义上的惟一性,具体来说,就是证明凡是满足实数公理的实数系模型都是同构的。
按照戴德金方法建立实数系后对其在同构意义下的惟一性的讨论可以参看斯皮瓦克的《微积分》 最后一章“实数的惟一性”。按照康托尔的柯西列方法建立实数系时的惟一性的讨论可以参看许绍溥、宋国柱等编的《数学分析》 第五章的最后部分的证明。