导数k=3-3x^2,令3-3x^2=0,解得x=1或x=-1。原函数极大值为y=2,极小值y=-2,所以x<-1或x>1时,函数递减,x属于[-1,1]时,函数递增。
对y求导,y'=3-3x²3-3x²>=0 得-1<=x<=13-3x²<=0得x>=1或x<=-1单调增区间为[-1,1]单调减区间为(-∞,-1]∪[1, +∞)