如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.(1)求证:CD是⊙O的切线;(

2025-04-27 21:53:54
推荐回答(1个)
回答1:

(1)证明:连接OC,
∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵OC=OA,
∴∠OAC=∠OCA,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∵OC为⊙O半径,
∴CD是⊙O的切线.

(2)解:在Rt△ADE中,由勾股定理得:AE=

92+122
=15,
∵OC∥AD,
∴△ECO∽△EDA,
OC
AD
=
EO
AE

OC
9
=
15?OC
15

解得:OC=
45
8

∴BE=AE-2OC=15-2×
45
8
=
15
4

答:BE的长是
15
4