(1)证明:连接OC,
∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵OC=OA,
∴∠OAC=∠OCA,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∵OC为⊙O半径,
∴CD是⊙O的切线.
(2)解:在Rt△ADE中,由勾股定理得:AE=
=15,
92+122
∵OC∥AD,
∴△ECO∽△EDA,
∴
=OC AD
,EO AE
∴
=OC 9
,15?OC 15
解得:OC=
,45 8
∴BE=AE-2OC=15-2×
=45 8
,15 4
答:BE的长是
.15 4