请问如何用函数极限定义证明该极限

2025-02-27 15:19:52
推荐回答(2个)
回答1:

证明:对任意的ε>0,解不等式
│√(x+2)-2│=│(x-2)/(√(x+2)+2)│ (分子分母同乘(√(x+2)+2))
<│x-2│/2<ε
得│x-2│<2ε,则取δ=2ε。
于是,对任意的ε>0,总存在正数δ,当│x-2│<δ时,有│√(x+2)-2│<ε。
即lim(x->0)[√(x+2)]=2,命题成立,证毕。

回答2: